Введение в IP сети

         

Пример маршрутизации по алгоритму OSPF



Пример маршрутизации по алгоритму OSPF

Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора - Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.

Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу - сначала маршрутизаторы должны синхронизировать свои маршрутные базы (рисунок 8.6).



Пример неустойчивой работы сети при использовании протокола RIP



Рисунок 8.2. Пример неустойчивой работы сети при использовании протокола RIP


При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.



Пример взаимодействия компьютеров через интерсеть



Рисунок 4.3. Пример взаимодействия компьютеров через интерсеть


Пусть в приведенном примере пользователь компьютера cit.dol.ru, находящийся в сети Ethernet с IP-адресом 194.87.23.0 (адрес класса С), хочет взаимодействовать по протоколу FTP с компьютером s1.msk.su, принадлежащем сети Ethernet с IP-адресом 142.06.0.0 (адрес класса В). Компьютер cit.dol.ru имеет IP-адрес 194.87.23.1.17, а компьютер s1.msk.su - IP-адрес 142.06.13.14.

1. Пользователь компьютера cit.dol.ru знает символьное имя компьютера s1.msk.su, но не знает его IP-адреса, поэтому он набирает команду

> ftp s1.msk.su

для организации ftp-сеанса.

В компьютере cit.dol.ru должны быть заданы некоторые параметры для стека TCP/IP, чтобы он мог выполнить поставленную перед ним задачу.

В число этих параметров должны входить собственный IP-адрес, IP-адрес DNS-сервера и IP-адрес маршрутизатора по умолчанию. Так как к сети Ethernet, к которой относится компьютер cit.dol.ru, подключен только один маршрутизатор, то таблица маршрутизации конечным узлам этой сети не нужна, достаточно знать IP-адрес маршрутизатора по умолчанию. В данном примере он равен 194.87.23.1.

Так как пользователь в команде ftp не задал IP-адрес узла, с которым он хочет взаимодействовать, то стек TCP/IP должен определить его самостоятельно. Он может сделать запрос к серверу DNS по имеющемуся у него IP-адресу, но обычно каждый компьютер сначала просматривает свою собственную таблицу соответствия символьных имен и IP-адресов. Такая таблица хранится чаще всего в виде текстового файла простой структуры - каждая его строка содержит запись об одном символьном имени и его IP-адресе. В ОС Unix такой файл традиционно носит имя HOSTS.

2. Будем считать, что компьютер cit.dol.ru имеет файл HOSTS, а в нем есть строка

142.06.13.14 s1.msk.su.

Поэтому разрешение имени выполняется локально, так что протокол IP может теперь формировать IP-пакеты с адресом назначения 142.06.13.14 для взаимодействия с компьютером s1.msk.su.

3. Протокол IP компьютера cit.dol.ru проверяет, нужно ли маршрутизировать пакеты для адреса 142.06.13.14.
Так как адрес сети назначения равен 142.06.0.0, а адрес сети, к которой принадлежит компьютер, равен 194.87.23.0, то маршрутизация необходима.
4. Компьютер cit.dol.ru начинает формировать кадр Ethernet для отправки IP-пакета маршрутизатору по умолчанию с IP-адресом 194.87.23.1. Для этого ему нужен МАС-адрес порта маршрутизатора, подключенного к его сети. Этот адрес скорее всего уже находится в кэш-таблице протокола ARP компьютера, если он хотя бы раз за последнее включение обменивался данными с компьютерами других сетей. Пусть этот адрес в нашем примере был найден именно в кэш-памяти. Обозначим его МАС11, в соответствии с номером маршрутизатора и его порта.
5. В результате компьютер cit.dol.ru отправляет по локальной сети кадр Ethernet, имеющий следующие поля:


DA (Ethernet) ... DESTINATION IP ... ...
МАС11
142.06.13.14


6. Кадр принимается портом 1 маршрутизатора 1 в соответствии с протоколом Ethernet, так как МАС-узел этого порта распознает свой адрес МАС11. Протокол Ethernet извлекает из этого кадра IP-пакет и передает его программному обеспечению маршрутизатора, реализующему протокол IP. Протокол IP извлекает из пакета адрес назначения и просматривает записи своей таблицы маршрутизации. Пусть маршрутизатор 1 имеет в своей таблице маршрутизации запись
142.06.0.0 135.12.0.11 2 1,
которая говорит о том, что пакеты для сети 142.06. 0.0 нужно передавать маршрутизатору 135.12.0.11, подключенному к той же сети, что и порт 2 маршрутизатора 1.
7. Маршрутизатор 1 просматривает параметры порта 2 и находит, что он подключен к сети FDDI. Так как сеть FDDI имеет значение максимального транспортируемого блока MTU больше, чем сеть Ethernet, то фрагментация поля данных IP-пакета не требуется. Поэтому маршрутизатор 1 формирует кадр формата FDDI, в котором указывает MAC-адрес порта маршрутизатора 2, который он находит в своей кэш-таблице протокола ARP:

DA (FDDI) ... DESTINATION IP ... ...
МАС21
142.06.13.14


8. Аналогично действует маршрутизатор 2, формируя кадр Ethernet для передачи пакета маршрутизатору 3 по сети Ethernet c IP-адресом 203.21.4.0:



DA (Ethernet) ... DESTINATION IP ... ...
МАС32
142.06.13.14


9. Наконец, после того, как пакет поступил в маршрутизатор сети назначения - маршрутизатор 3, появляется возможность передачи этого пакета компьютеру назначения. Маршрутизатор 3 видит, что пакет нужно передать в сеть 142.06.0.0, которая непосредственно подключена к его первому порту. Поэтому он посылает ARP-запрос по сети Ethernet c IP-адресом компьютера s1.msk.su (считаем, что этой информации в его кэше нет), получает ответ, содержащий адрес MACs1, и формирует кадр Ethernet, доставляющий IP-пакет по локальной сети адресату.

DA (Ethernet) ... DESTINATION IP ... ...
МАСs1
142.06.13.14

Пример взаимодействия узлов с использованием протокола IP



Пример взаимодействия узлов с использованием протокола IP

Рассмотрим на примере интерсети, приведенной на рисунке 4.3, каким образом происходит взаимодействие компьютеров через маршрутизаторы и доставка пакетов компьютеру назначения.



Принципы построения составных сетей



Принципы построения составных сетей

Сетевой уровень в первую очередь должен предоставлять средства для решения следующих задач:

доставки пакетов в сети с произвольной топологией,

структуризации сети путем надежной локализации трафика,

согласования различных протоколов канального уровня.



Простая маршрутизация



Простая маршрутизация

Алгоритмы простой маршрутизации подразделяются на три подкласса:

Случайная маршрутизация - пакеты передаются в любом, случайном направлении, кроме исходного.

Лавинная маршрутизация - пакеты передаются во всех направлениях, кроме исходного (применяется в мостах для пакетов с неизвестным адресом доставки).

Маршрутизация по предыдущему опыту - таблицы маршрутов составляются на основании данных, содержащихся в проходящих через маршрутизатор пакетах. Именно так работают прозрачные мосты, собирая сведения об адресах узлов, входящих в сегменты сети. Такой способ маршрутизации обладает медленной адаптируемостью к изменениям топологии сети.



Протокол доставки пользовательских дейтаграмм UDP



Протокол доставки пользовательских дейтаграмм UDP

Задачей протокола транспортного уровня UDP (User Datagram Protocol) является передача данных между прикладными процессами без гарантий доставки, поэтому его пакеты могут быть потеряны, продублированы или прийти не в том порядке, в котором они были отправлены.



Протокол межсетевого взаимодействия IP



Протокол межсетевого взаимодействия IP

Основу транспортных средств стека протоколов TCP/IP составляет протокол межсетевого взаимодействия - Internet Protocol (IP). К основным функциям протокола IP относятся:

перенос между сетями различных типов адресной информации в унифицированной форме,

сборка и разборка пакетов при передаче их между сетями с различным максимальным значением длины пакета.



Протокол надежной доставки сообщений TCP



Протокол надежной доставки сообщений TCP

В стеке протоколов TCP/IP протокол TCP (Transmission Control Protocol) работает так же, как и протокол UDP, на транспортном уровне. Он обеспечивает надежную транспортировку данных между прикладными процессами путем установления логического соединения.



Протокол состояния связей OSPF



Протокол состояния связей OSPF

Протокол OSPF (Open Shortest Path Firs)

является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.

Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.

Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются "соседями". Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.

Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.

Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа "точка-точка" между маршрутизаторами, к которым не подключены рабочие станции.


Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.

Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии "точка-точка" имели IP-адрес, что приводит к дополнительным затратам IP-адресов.

В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.

Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.

Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия "маршрут по умолчанию", используемого во многих сетях.

Использование подсетей с различным количеством хостов является вполне естественным.


Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.

В протоколе OSPF подсети делятся на три категории:

"хост-сеть", представляющая собой подсеть из одного адреса,

"тупиковая сеть", которая представляет собой подсеть, подключенную только к одному маршрутизатору,

"транзитная сеть", которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.

Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях. Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.

Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие "выделенного" маршрутизатора, который выполняет две функции.

Во-первых, выделенный маршрутизатор и его резервный "напарник" являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.



Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.

Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.

Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.

Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access). Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.

Интерфейсы "точка-точка", подобные PPP, несколько отличаются от традиционной IP-модели.


Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.

В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.

Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet'у назначается значение 10, а линии 56 Кб/с - число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.

В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).

HELLO - это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети. Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO.Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.


Протоколы обмена маршрутной информацией стека TCP/IP



Протоколы обмена маршрутной информацией стека TCP/IP

Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),

алгоритм состояния связей (Link State Algorithms, LSA).

В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.

Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.

Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.

Алгоритмы состояния связей

обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.

Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.

Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.



Протоколы передачи данных и протоколы обмена маршрутной информацией



Протоколы передачи данных и протоколы обмена маршрутной информацией

Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией

(или протоколами маршрутизации). Протоколы обмена маршрутной информацией следует отличать от, собственно, протоколов сетевого уровня. В то время как первые несут чисто служебную информацию, вторые предназначены для передачи пользовательских данных, также, как это делают протоколы канального уровня.

Для того, чтобы доставить удаленному маршрутизатору пакет протокола обмена маршрутной информацией, используется протокол сетевого уровня, так как только он может передать информацию между маршрутизаторами, находящимися в разных сетях. Пакет протокола обмена маршрутной информацией помещается в поле данных пакета сетевого уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации следует отнести к более высокому уровню, чем сетевой. Но функционально они решают общую задачу с пакетами сетевого уровня - доставляют кадры адресату через разнородную составную сеть.

С помощью протоколов обмена маршрутной информацией маршрутизаторы составляют карту межсетевых связей той или иной степени подробности и принимают решение о том, какому следующему маршрутизатору нужно передать пакет для образования рационального пути.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.



с тех пор основные принципы



Развитие стека TCP/IP: протокол IPv.6

Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.

Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.

Повышение производительности компьютеров и коммуникационного оборудования. За время существования стека производительность компьютеров возросла на два порядка, объемы оперативной памяти выросли более чем в 30 раз, пропускная способность магистрали Internet в Соединенных Штатах выросла в 800 раз.

Появление новых приложений. Коммерческий бум вокруг Internet и использование ее технологий при создании intranet привели к появлению в сетях TCP/IP, ранее использовавшихся в основном в научных целях, большого количества приложений нового типа, работающих с мультимедийной информацией. Эти приложения чувствительны к задержкам передачи пакетов, так как такие задержки приводят к искажению передаваемых в реальном времени речевых сообщений и видеоизображений. Особенностью мультимедийных приложений является также передача очень больших объемов информации. Некоторые технологии вычислительных сетей, например, frame relay и ATM, уже имеют в своем арсенале механизмы для резервирования полосы пропускания для определенных приложений. Однако эти технологии еще не скоро вытеснят традиционные технологии локальных сетей, не поддерживающие мультимедийные приложения (например, Ethernet). Следовательно, необходимо компенсировать такой недостаток средствами сетевого уровня, то есть средствами протокола IP.

Бурное расширение сети Internet. В начале 90-х годов сеть Internet расширялась очень быстро, новый узел появлялся в ней каждые 30 секунд, но 95-й год стал переломным - перспективы коммерческого использования Internet стали отчетливыми и сделали ее развитие просто бурным.
Первым следствием такого развития стало почти полное истощение адресного пространства Internet, определяемого полем адреса IP в четыре байта.

Новые стратегии администрирования. Расширение Internet связано с его проникновением в новые страны и новые отрасли промышленности. При этом в сети появляются новые органы администрирования, которые начинают использовать новые методы администрирования. Эти методы требуют появления новых средств в базовых протоколах стека TCP/IP.

Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.

Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6, а все остальные предложения группируются под названием IP Next Generation, IPng.

В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.

Использование более длинных адресов. Новый размер адреса - наиболее заметное отличие IPv6 от IPv4. Версия 6 использует 128-битные адреса.

Гибкий формат заголовка. Вместо заголовка с фиксированными полями фиксированного размера (за исключением поля Резерв), IPv6 использует базовый заголовок фиксированного формата плюс набор необязательных заголовков различного формата.

Поддержка резервирования пропускной способности. В IPv6 механизм резервирования пропускной способности заменяет механизм классов сервиса версии IPv4.

Поддержка расширяемости протокола.Это одно из наиболее значительных изменений в подходе к построению протокола - от полностью детализированного описания протокола к протоколу, который разрешает поддержку дополнительных функций.


Реакция на перегрузку сети



Реакция на перегрузку сети

Варьируя величину окна, можно повлиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах-маршрутизаторах и в конечных узлах-компьютерах.

При переполнении приемного буфера конечного узла "перегруженный" протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого, сообщение должно сопровождаться пометкой "срочно" (бит URG в запросе установлен в 1). В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные.

После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный запрос он посылает квитанцию с указанием ненулевого размера окна.

Другим проявлением перегрузки сети является переполнение буферов в маршрутизаторах. В таких случаях они могут централизовано изменить размер окна, посылая управляющие сообщения некоторым конечным узлам, что позволяет им дифференцировано управлять интенсивностью потока данных в разных частях сети.



Реализация скользящего окна в протоколе TCP



Реализация скользящего окна в протоколе TCP

В протоколе TCP реализована разновидность алгоритма квитирования с использованием окна. Особенность этого алгоритма состоит в том, что, хотя единицей передаваемых данных является сегмент, окно определено на множестве нумерованных байт неструктурированного потока данных, поступающих с верхнего уровня и буферизуемых протоколом TCP.

Квитанция посылается только в случае правильного приема данных, отрицательные квитанции не посылаются. Таким образом, отсутствие квитанции означает либо прием искаженного сегмента, либо потерю сегмента, либо потерю квитанции.

В качестве квитанции получатель сегмента отсылает ответное сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Если размер окна равен W, а последняя квитанция содержала значение N, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером N+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.



Сеансовый уровень



Сеансовый уровень

предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.



Сегменты TCP



Сегменты TCP

Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байт. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера "вырезается" некоторая непрерывная часть данных, называемая сегментом.

В протоколе TCP предусмотрен случай, когда приложение обращается с запросом о срочной передаче данных (бит PSH в запросе установлен в 1). В этом случае протокол TCP, не ожидая заполнения буфера до уровня размера сегмента, немедленно передает указанные данные в сеть. О таких данных говорят, что они передаются вне потока - out of band.

Не все сегменты, посланные через соединение, будут одного и того же размера, однако оба участника соединения должны договориться о максимальном размере сегмента, который они будут использовать. Этот размер выбирается таким образом, чтобы при упаковке сегмента в IP-пакет он помещался туда целиком, то есть максимальный размер сегмента не должен превосходить максимального размера поля данных IP-пакета. В противном случае пришлось бы выполнять фрагментацию, то есть делить сегмент на несколько частей, для того, чтобы он вместился в IP-пакет.

Аналогичные проблемы решаются и на сетевом уровне. Для того, чтобы избежать фрагментации, должен быть выбран соответствующий максимальный размер IP-пакета. Однако при этом должны быть приняты во внимание максимальные размеры поля данных кадров (MTU) всех протоколов канального уровня, используемых в сети. Максимальный размер сегмента не должен превышать минимальное значение на множестве всех MTU составной сети.



Сетевой уровень



Сетевой уровень

обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.



Сетевой уровень и модель OSI



Сетевой уровень и модель OSI

В модели OSI, называемой также моделью взаимодействия открытых систем

(Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам

(International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.

Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.

Рассмотрим коротко основные функции уровней модели OSI.



SNMP



SNMP

(Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Internet, которые традиционно часто называют также шлюзами. С ростом популярности протокол SNMP стали применять и для управления любым коммуникационным оборудованием - концентраторами, мостами, сетевыми адаптерами и т.д. и т.п. Проблема управления в протоколе SNMP разделяется на две задачи.

Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия SNMP-агента, работающего в управляемом оборудовании, и SNMP-монитора, работающего на компьютере администратора, который часто называют также консолью управления. Протоколы передачи определяют форматы сообщений, которыми обмениваются агенты и монитор.

Вторая задача связана с контролируемыми переменными, характеризующими состояние управляемого устройства. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в устройствах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые управляемое устройство должно сохранять, и допустимые операции над ними.

|



Соглашения о специальных адресах: broadcast, multicast, loopback



Соглашения о специальных адресах: broadcast, multicast, loopback

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

если IР-адрес состоит только из двоичных нулей,

0 0 0 0 ................................... 0 0 0 0

то он обозначает адрес того узла, который сгенерировал этот пакет;

если в поле номера сети стоят 0,

0 0 0 0 .......0 Номер узла

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет;

если все двоичные разряды IP-адреса равны 1,

1 1 1 1 .........................................1 1
 

то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

если в поле адреса назначения стоят сплошные 1,

Номер сети 1111................11

то пакет, имеющий такой адрес рассылается всем узлам сети с заданным номером. Такая рассылка называется широковещательным сообщением (broadcast);

адрес 127.0.0.1 зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback.

Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.



Согласование протоколов канального уровня



Согласование протоколов канального уровня

Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.

Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).

Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.



Сообщения о недостижимости узла назначения



Сообщения о недостижимости узла назначения

Когда маршрутизатор не может передать или доставить IP-пакет, он отсылает узлу, отправившему этот пакет, сообщение "Узел назначения недостижим" (тип сообщения - 3). Это сообщение содержит в поле кода значение, уточняющее причину, по которой пакет не был доставлен. Причина кодируется следующим образом:



Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик



Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик

В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):

(1)



Структура IР-адреса



Рисунок 3.1. Структура IР-адреса

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.

Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.

Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.

Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.



Структура стека TCP/IP. Краткая характеристика протоколов



Структура стека TCP/IP. Краткая характеристика протоколов

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 2.1. Протоколы TCP/IP делятся на 4 уровня.



Структуризация сетей IP с помощью масок



Структуризация сетей IP с помощью масок

Часто администраторы сетей испытывают неудобства, из-за того, что количество централизовано выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например, разместить все слабо взаимодействующие компьютеры по разным сетям.

В такой ситуации возможны два пути. Первый из них связан с получением от NIC дополнительных номеров сетей. Второй способ, употребляющийся более часто, связан с использованием так называемых масок, которые позволяют разделять одну сеть на несколько сетей.

Маска - это число, двоичная запись которого содержит единицы в тех разрядах, которые должны интерпретироваться как номер сети.

Например, для стандартных классов сетей маски имеют следующие значения:

255.0.0.0 - маска для сети класса А,

255.255.0.0 - маска для сети класса В,

255.255.255.0 - маска для сети класса С.

В масках, которые использует администратор для увеличения числа сетей, количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты.

Пусть, например, маска имеет значение 255.255.192.0 (11111111 11111111 11000000 00000000). И пусть сеть имеет номер 129.44.0.0 (10000001 00101100 00000000 00000000), из которого видно, что она относится к классу В. После наложения маски на этот адрес число разрядов, интерпретируемых как номер сети, увеличилось с 16 до 18, то есть администратор получил возможность использовать вместо одного, централизованно заданного ему номера сети, четыре:

129.44.0.0 (10000001 00101100 00000000 00000000)

129.44.64.0 (10000001 00101100 01000000 00000000)

129.44.128.0 (10000001 00101100 10000000 00000000)

129.44.192.0 (10000001 00101100 11000000 00000000)

Например, IP-адрес 129.44.141.15 (10000001 00101100 10001101 00001111), который по стандартам IP задает номер сети 129.44.0.0 и номер узла 0.0.141.15, теперь, при использовании маски, будет интерпретироваться как пара:

129.44.128.0 - номер сети, 0.0. 13.15 - номер узла.

Таким образом, установив новое значение маски, можно заставить маршрутизатор по-другому интерпретировать IP-адрес. При этом два дополнительных последних бита номера сети часто интерпретируются как номера подсетей.

Еще один пример. Пусть некоторая сеть относится к классу В и имеет адрес 128.10.0.0 (рисунок 4.4).



TCP



TCP

(Transmission Control Protocol) и протокол дейтаграмм пользователя



Telnet



telnet

обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленного компьютера. При использовании сервиса telnet пользователь фактически управляет удаленным компьютером так же, как и локальный пользователь, поэтому такой вид доступа требует хорошей защиты. Поэтому серверы telnet всегда используют как минимум аутентификацию по паролю, а иногда и более мощные средства защиты, например, систему Kerberos.

Протокол



TFTP



TFTP

(Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол



Тип протокола



Тип протокола

Длина локального адреса Длина сетевого адреса Операция
Локальный адрес отправителя (байты 0 - 3)
Локальный адрес отправителя (байты 4 - 5) IP-адрес отправителя (байты 0-1)
IP-адрес отправителя (байты 2-3) Искомый локальный адрес (байты 0 - 1)
Искомый локальный адрес (байты 2-5)
Искомый IP-адрес (байты 0 - 3)



Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя)



Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя)

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.

IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.



Транспортный уровень



Транспортный уровень

обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.



Три основных класса IP-адресов



Три основных класса IP-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:

128.10.2.30 - традиционная десятичная форма представления адреса,

10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

На рисунке 3.1 показана структура IP-адреса.

Класс А

0 N сети N узла

Класс В

1 0 N сети N узла

Класс С

1 1 0 N сети N узла

Класс D

1 1 1 0 адрес группы multicast

Класс Е

1 1 1 1 0 зарезервирован



UDP



UDP

(User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.

Верхний уровень (



Управление фрагментацией



Управление фрагментацией

Протоколы транспортного уровня (протоколы TCP или UDP), пользующиеся сетевым уровнем для отправки пакетов, считают, что максимальный размер поля данных IP-пакета равен 65535, и поэтому могут передать ему сообщение такой длины для транспортировки через интерсеть. В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.

В большинстве типов локальных и глобальных сетей определяется такое понятие как максимальный размер поля данных кадра или пакета, в которые должен инкапсулировать свой пакет протокол IP. Эту величину обычно называют максимальной единицей транспортировки - Maximum Transfer Unit, MTU. Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI - 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.

Работа протокола IP по фрагментации пакетов в хостах и маршрутизаторах иллюстрируется рисунком 4.1.

Пусть компьютер 1 связан с сетью, имеющей значение MTU в 4096 байтов, например, с сетью FDDI. При поступлении на IP-уровень компьютера 1 сообщения от транспортного уровня размером в 5600 байтов, протокол IP делит его на два IP-пакета, устанавливая в первом пакете признак фрагментации и присваивая пакету уникальный идентификатор, например, 486. В первом пакете величина поля смещения равна 0, а во втором - 2800. Признак фрагментации во втором пакете равен нулю, что показывает, что это последний фрагмент пакета. Общая величина IP-пакета составляет 2800+20 (размер заголовка IP), то есть 2820 байтов, что умещается в поле данных кадра FDDI.



Уровень I



уровень I

) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них.

Протокол пересылки файлов



Уровень II



уровень II

) называется основным. На этом уровне функционируют протокол управления передачей



Уровень III



уровень III

) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол



Уровень IV



уровень IV

) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.

Следующий уровень (



Уровень представления



Уровень представления

. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.



Выбор маршрутизатора конечным узлом



Рисунок 4.2. Выбор маршрутизатора конечным узлом


Длина маршрута может существенно измениться в зависимости от того, какой маршрутизатор выберет компьютер для передачи своего пакета на сервер, расположенный, например, в Германии, если маршрутизатор 1 соединен выделенной линией с маршрутизатором в Копенгагене, а маршрутизатор 2 имеет спутниковый канал, соединяющий его с Токио.

В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения, на основании так называемых таблиц маршрутизации (routing tables).

Следующая таблица представляет собой типичный пример таблицы маршрутов, использующей IP-адреса сетей:

Адрес сети

назначения

Адрес следующего маршрутизатора Номер выходного

порта

Расстояние до

сети назначения

56.0.0.0 198.21.17.7 1 20
56.0.0.0 213.34.12.4. 2 130
116.0.0.0 213.34.12.4 2 1450
129.13.0.0 198.21.17.6 1 50
198.21.17.0 - 2 0
213. 34.12.0 - 1 0
default 198.21.17.7 1 -

В этой таблице в столбце "Адрес сети назначения" указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты. В стеке TCP/IP принят так называемый одношаговый подход

к оптимизации маршрута продвижения пакета (next-hop routing) - каждый маршрутизатор и конечный узел принимает участие в выборе только одного шага передачи пакета. Поэтому в каждой строке таблицы маршрутизации указывается не весь маршрут в виде последовательности IP-адресов маршрутизаторов, через которые должен пройти пакет, а только один IP-адрес - адрес следующего маршрутизатора, которому нужно передать пакет. Вместе с пакетом следующему маршрутизатору передается ответственность за выбор следующего шага маршрутизации. Одношаговый подход к маршрутизации означает распределенное решение задачи выбора маршрута. Это снимает ограничение на максимальное количество транзитных маршрутизаторов на пути пакета.

(Альтернативой одношаговому подходу является указание в пакете всей последовательности маршрутизаторов, которые пакет должен пройти на своем пути.
Такой подход называется маршрутизацией от источника - Source Routing. В этом случае выбор маршрута производится конечным узлом или первым маршрутизатором на пути пакета, а все остальные маршрутизаторы только отрабатывают выбранный маршрут, осуществляя коммутацию пакетов, то есть передачу их с одного порта на другой. Алгоритм Source Routing применяется в сетях IP только для отладки, когда маршрут задается в поле Резерв (IP OPTIONS) пакета.)

В случае, если в таблице маршрутов имеется более одной строки, соответствующей одному и тому же адресу сети назначения, то при принятии решения о передаче пакета используется та строка, в которой указано наименьшее значение в поле "Расстояние до сети назначения".

При этом под расстоянием понимается любая метрика, используемая в соответствии с заданным в сетевом пакете классом сервиса. Это может быть количество транзитных маршрутизаторов в данном маршруте (количество хопов от hop - прыжок), время прохождения пакета по линиям связи, надежность линий связи, или другая величина, отражающая качество данного маршрута по отношению к конкретному классу сервиса. Если маршрутизатор поддерживает несколько классов сервиса пакетов, то таблица маршрутов составляется и применяется отдельно для каждого вида сервиса (критерия выбора маршрута).

Для отправки пакета следующему маршрутизатору требуется знание его локального адреса, но в стеке TCP/IP в таблицах маршрутизации принято использование только IP-адресов для сохранения их универсального формата, не зависящего от типа сетей, входящих в интерсеть. Для нахождения локального адреса по известному IP-адресу необходимо воспользоваться протоколом ARP.

Конечный узел, как и маршрутизатор, имеет в своем распоряжении таблицу маршрутов унифицированного формата и на основании ее данных принимает решение, какому маршрутизатору нужно передавать пакет для сети N. Решение о том, что этот пакет нужно вообще маршрутизировать, компьютер принимает в том случае, когда он видит, что адрес сети назначения пакета отличается от адреса его собственной сети (каждому компьютеру при конфигурировании администратор присваивает его IP-адрес или несколько IP-адресов, если компьютер одновременно подключен к нескольким сетям).


Когда компьютер выбрал следующий маршрутизатор, то он просматривают кэш-таблицу адресов своего протокола ARP и, может быть, находит там соответствие IP-адреса следующего маршрутизатора его MAC-адресу. Если же нет, то по локальной сети передается широковещательный ARP-запрос и локальный адрес извлекается из ARP-ответа.

После этого компьютер формирует кадр протокола, используемого на выбранном порту, например, кадр Ethernet, в который помещает МАС-адрес маршрутизатора. Маршрутизатор принимает кадр Ethernet, извлекает из него пакет IP и просматривает свою таблицу маршрутизации для нахождения следующего маршрутизатора. При этом он выполняет те же действия, что и конечный узел.

Одношаговая маршрутизация обладает еще одним преимуществом - она позволяет сократить объем таблиц маршрутизации в конечных узлах и маршрутизаторах за счет использования в качестве номера сети назначения так называемого маршрута по умолчанию - default, который обычно занимает в таблице маршрутизации последнюю строку. Если в таблице маршрутизации есть такая запись, то все пакеты с номерами сетей, которые отсутствуют в таблице маршрутизации, передаются маршрутизатору, указанному в строке default. Поэтому маршрутизаторы часто хранят в своих таблицах ограниченную информацию о сетях интерсети, пересылая пакеты для остальных сетей в порт и маршрутизатор, используемые по умолчанию. Подразумевается, что маршрутизатор, используемый по умолчанию, передаст пакет на магистральную сеть, а маршрутизаторы, подключенные к магистрали, имеют полную информацию о составе интерсети.

Особенно часто приемом маршрутизации по умолчанию пользуются конечные узлы. Хотя они также в общем случае имеют в своем распоряжении таблицу маршрутизации, ее объем обычно незначителен, так как маршрутизация для компьютера - не основное занятие. Главная роль в маршрутизации пакетов в концепции протокола IP отводится, естественно, маршрутизаторам, которые должны обладать гораздо более полными таблицами маршрутизации, чем конечные узлы.


Конечный узел часто вообще работает без таблицы маршрутизации, имея только сведения об IP-адресе маршрутизатора по умолчанию. При наличии одного маршрутизатора в локальной сети этот вариант - единственно возможный для всех конечных узлов. Но даже при наличии нескольких маршрутизаторов в локальной сети, когда проблема их выбора стоит перед конечным узлом, задание маршрута по умолчанию часто используется в компьютерах для сокращения объема их маршрутной таблицы.

Другим способом разгрузки компьютера от необходимости ведения больших таблиц маршрутизации является получение от маршрутизатора сведений о рациональном маршруте для какой-нибудь конкретной сети с помощью протокола ICMP.

Кроме маршрута default, в таблице маршрутизации могут встретиться два типа специальных записей - запись о специфичном для узла маршруте и запись об адресах сетей, непосредственно подключенных к портам маршрутизатора.

Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае, когда в таблице есть разные записи о продвижении пакетов для всей сети N и ее отдельного узла, имеющего адрес N,D, при поступлении пакета, адресованного узлу N,D, маршрутизатор отдаст предпочтение записи для N,D.

Записи в таблице маршрутизации, относящиеся к сетям, непосредственно подключенным к маршрутизатору, в поле "Расстояние до сети назначения" содержат нули.

Еще одним отличием работы маршрутизатора и конечного узла при выборе маршрута является способ построения таблицы маршрутизации. Если маршрутизаторы обычно автоматически создают таблицы маршрутизации, обмениваясь служебной информацией, то для конечных узлов таблицы маршрутизации создаются, как правило, вручную администраторами, и хранятся в виде постоянных файлов на дисках.

Существуют различные алгоритмы построения таблиц для одношаговой маршрутизации.Их можно разделить на три класса:

алгоритмы фиксированной маршрутизации,

алгоритмы простой маршрутизации,

алгоритмы адаптивной маршрутизации.

Независимо от алгоритма, используемого для построения таблицы маршрутизации, результат их работы имеет единый формат. За счет этого в одной и той же сети различные узлы могут строить таблицы маршрутизации по своим алгоритмам, а затем обмениваться между собой недостающими данными, так как форматы этих таблиц фиксированы. Поэтому маршрутизатор, работающий по алгоритму адаптивной маршрутизации, может снабдить конечный узел, применяющий алгоритм фиксированной маршрутизации, сведениями о пути к сети, о которой конечный узел ничего не знает.


Выбор тайм-аута



Выбор тайм-аута

Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP.

Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или "заблудившейся" квитанции.

При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы. В протоколе TCP тайм-аут определяется с помощью достаточно сложного адаптивного алгоритма, идея которого состоит в следующем. При каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме (время оборота). Получаемые значения времен оборота усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. Это делается с тем, чтобы усилить влияние последних замеров. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.



Зарезервированные и доступные порты UDP



Зарезервированные и доступные порты UDP

В то время, как задачей сетевого уровня является передача данных между произвольными узлами сети, задача транспортного уровня заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того, как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.

Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется на транспортном уровне, является идентификатор (номер) порта прикладного сервиса. Номер порта, задаваемый транспортным уровнем, в совокупности с номером сети и номером компьютера, задаваемыми сетевым уровнем, однозначно определяют прикладной процесс в сети.

Назначение номеров портов прикладным процессам осуществляется либо централизовано, если эти процессы представляют собой популярные общедоступные сервисы, типа сервиса удаленного доступа к файлам TFTP (Trivial FTP) или сервиса удаленного управления telnet, либо локально для тех сервисов, которые еще не стали столь распространенными, чтобы за ними закреплять стандартные (зарезервированные) номера.

Централизованное присвоение сервисам номеров портов выполняется организацией Internet Assigned Numbers Authority. Эти номера затем закрепляются и опубликовываются в стандартах Internet. Например, упомянутому выше сервису удаленного доступа к файлам TFTP присвоен стандартный номер порта 69.

Локальное присвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.